
Nonregular Languages



Recap from Last Time



Theorem: The following are all equivalent:

· L is a regular language.

· There is a DFA D such that ℒ(D) = L.

· There is an NFA N such that ℒ(N) = L.

· There is a regular expression R such that ℒ(R) = L.



New Stuff!



Why does this matter?



Buttons as Finite-State Machines:

http://cs103.stanford.edu/tools/button-fsm/

http://cs103.stanford.edu/tools/button-fsm/


http://www.tti.unipa.it/~gneglia/ip_networks06/slides/TCPIP_State_Transition_Diagram.pdf

http://www.tti.unipa.it/~gneglia/ip_networks06/slides/TCPIP_State_Transition_Diagram.pdf


https://blog.codecentric.de/en/2016/07/handling-ios-app-states-state-machine/

https://blog.codecentric.de/en/2016/07/handling-ios-app-states-state-machine/


What exactly is a finite-state machine?
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The Model

The computing device has internal workings that can 
be in one of finitely many possible configurations.

Each state in a DFA corresponds to some possible 
configuration of the internal workings.

After each button press, the computing device does 
some amount of processing, then gets to a 
configuration where it's ready to receive more input.

Each transition abstracts away how the computation is 
done and just indicates what the ultimate configuration 
looks like.

After the user presses the “done” button, the computer 
outputs either YES or NO.

The accepting and rejecting states of the machine 
model what happens when that button is pressed.



Computers as Finite Automata

My computer has 32GB of RAM and about 
465GB of hard disk space.

That's a total of 497GB of memory, which is 
533,649,686,528 bits.

There are “only” 2533,649,686,528 possible 
configurations of the memory in my computer.

You could in principle build a DFA 
representing my computer, where there's one 
symbol per type of input the computer can 
receive.



A Powerful Intuition

Regular languages correspond to problems 
that can be solved with finite memory.

At each point in time, we only need to store one 
of finitely many pieces of information.

Nonregular languages, in a sense, correspond to 
problems that cannot be solved with finite 
memory.

Since every computer ever built has finite 
memory, in a sense, nonregular languages 
correspond to problems that cannot be solved by 
physical computers!



Finding Nonregular Languages



Finding Nonregular Languages

To prove that a language is regular, we can just find 
a DFA, NFA, or regex for it.

To prove that a language is not regular, we need to 
prove that there are no possible DFAs, NFAs, or 
regexes for it.

Claim: We can actually just prove that there's no 
DFA for it. Why is this?

This sort of argument will be challenging. Our 
arguments will be somewhat technical in nature, 
since we need to rigorously establish that no 
amount of creativity could produce a DFA for a 
given language.

Let's see an example of how to do this.



A Simple Language

Let Σ = {a, b} and consider the following 
language:

E = {anbn | n ∈ ℕ }     

E is the language of all strings of n a's 
followed by n b's:

{ ε, ab, aabb, aaabbb, aaaabbbb, … }



A Simple Language

E = {anbn | n ∈ ℕ }      

How many of the following are regular 
expressions for the language E defined 

above?

a*b*
(ab)*

ε ∪ ab ∪ a2b2 ∪ a3b3



Another Attempt

Let’s try to design an NFA for

E = {anbn | n ∈ ℕ }.      

Does this machine work?

start
b

a



Another Attempt

Let’s try to design an NFA for

E = {anbn | n ∈ ℕ }.      

How about this one?

start

ba

ε ε



Another Attempt

Let’s try to design an NFA for

E = {anbn | n ∈ ℕ }.      

What about this?

start

b

a

bb

a



We seem to be running into some trouble.

Why is that?



Let's imagine what a DFA for the language

{ anbn | n ∈ ℕ} would have to look like.

Can we say anything about it?
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aaaabbbb
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aabbbb
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These cannot be 
the same state!

This isn't a single 
transition. Think of it as 

“after reading aaaa, we 
end up at this state.”
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What’s Going On?

As you just saw, the strings a4 and a2 can't end up in 
the same state in any DFA for E = {anbn | n ∈ ℕ}.

Two proof routes:

Direct: The states you reach for a4 and a2 have to
behave differently when reading b4 – in one case it 
should lead to an accept state, in the other it 
should lead to a reject state. Therefore, they must 
be different states.

Contradiction: Suppose you do end up in the same 
state. Then a4b4 and a2b4 end up in the same state, 
so we either reject a4b4 (oops) or accept a2b4 (oops).

Powerful intuition: Any DFA for E must keep a4

and a2 separated. It needs to remember something 
fundamentally different after reading those strings.



This idea – that two strings shouldn't end 
up in the same DFA state – is fundamental 

to discovering nonregular languages.

Let's go formalize this!



Distinguishability

Let L be an arbitrary language over Σ.

Two strings x ∈ Σ* and y ∈ Σ* are called 
distinguishable relative to L if there is a string 
w ∈ Σ* such that exactly one of xw and yw is in L.

We denote this by writing x ≢L y.

In our previous example, we saw that a2 ≢E a4.

Try appending b4 to both of them.

Formally, we say that x ≢L y if the following is true:

∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L)   



If L is a language over Σ and x, y ∈ Σ*, we say that

x ≢L y if    ∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L)

Let L = { w ∈ {a, b}*   |   |w| is a multiple of three }.

How many of the following statements are true?

a ≢L aa
aaa ≢L aa
a ≢L aaaa
aa ≢L bb
ε ≢L baba



Distinguishability

Theorem: Let L be an arbitrary language over Σ. 
Let x ∈ Σ* and y ∈ Σ* be strings where x ≢L y. Then 
if D is any DFA for L, then D must end in different 
states when run on inputs x and y.

Proof sketch:

q₀ qₖ qₙ

start  

y

x xw

yw

Hypothetically speaking, 
how would you formally 

prove this using the 5-tuple 
definition of a DFA?
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Distinguishability

Let's focus on this language for now:

E = {anbn | n ∈ ℕ }

Lemma: If m, n ∈ ℕ and m ≠ n, then am ≢E an.

Proof: Let am and an be strings where m ≠ n.
Then ambm ∈ E and anbm ∉ E. Therefore, we
see that am ≢E an, as required. ■



A Bad Combination

Suppose there is a DFA D for the language
E = {anbn | n ∈ ℕ }.

We know the following:

• Any two strings of the form am and an, where m ≠ 
n, cannot end in the same state when run 
through D.

• There are infinitely many pairs of strings of the 
form am and an.

However, there are only finitely many states they 
can end up in, since D is a deterministic finite
automaton!

What happens if we put these pieces together?



Theorem: The language E = { anbn | n ∈ ℕ } is not regular.

Proof: Suppose for the sake of contradiction that E is regular.
Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D.

Our lemma tells us that am ≢ an, so by our earlier theorem we 
know that am and an cannot end in the same state when run 
through D. But this is impossible, since we know that am and an

must end in the same state when run through D.

We have reached a contradiction, so our assumption must have 
been wrong. Therefore, E is not regular. ■
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We're going to see a simpler proof of this result later on once we've built more 
machinery. If (hypothetically speaking) you want to prove something like this 

in the future, we'd recommend not using this proof as a template.



What Just Happened?

We've just hit the limit of finite-
memory computation.

To build a DFA for E = { anbn | n ∈ ℕ }, we 
need to have different memory 
configurations (states) for all possible 
strings of the form an.

There's no way to do this with finitely many 
possible states!



Where We're Going

We just used the idea of distinguishability 
to show that no possible DFA can exist for 
some language.

This technique turns out to be pretty 
powerful.

We're going to see one more example of 
this technique in action, then generalize it 
to an extremely powerful theorem for 
finding nonregular languages.



Time-Out for Announcements!



Midterm Exam

• Grades are released and solutions up.

• You have until next Monday to submit a 
regrade request.

• We’ll be releasing some “practice 
midterms” this week, and some practice 
finals next week.

• Solutions include a guide to computing your 
current grade in the class. 

• Disappointed with the exam? Come talk to 
us!



Withdraws and Incompletes

• The withdraw deadline for the class is 
5pm(?) this Friday.

• Covid-19 and surrounding circumstances
are stressful. We are willing to offer 
incompletes, no questions asked.



Your Questions

“test question, please ignore?”



Your Questions

What are some things that you (as teaching 
staff) think we should know about the 
upcoming school year?

(i.e. remote classes, grading system, less 
course offerings, office hours)



Your Questions

Working in CS – industry or academia?



More questions?

• Head to sli.do and put in code
G517 and you can ask or vote on 
other questions. 

• Questions not answered today
may still be answered on Friday,
plus any new questions.

• We’ll aim for a few questions 
each day for the rest of class.



Let’s take a five minute break!



More Nonregular Languages



Another Language

Consider the following language L over the 
alphabet Σ = {a, b, ≟}:

EQ = { w≟w | w ∈ {a, b}*}  

EQ is the language all strings consisting of 
the same string of a's and b's twice, with a 
≟ symbol in-between.

Examples:

ab≟ab ∈ EQ bbb≟bbb ∈ EQ ≟ ∈ EQ

ab≟ba ∉ EQ bbb≟aaa ∉ EQ b≟ ∉ EQ



Another Language

EQ = { w≟w | w ∈ {a, b}*}  

This language corresponds to the following 
problem:

Given strings x, y ∈, {a, b}*,
does x = y?

Justification: x = y happens if and only if
x≟y ∈ EQ.

Is this language regular?



The Intuition

EQ = { w≟w | w ∈ {a, b}*}  

Intuitively, any machine for EQ has to be able 
to remember the contents of everything to the 
left of the ≟ so that it can match them against 
the contents of the string to the right of the ≟.

There are infinitely many possible strings we 
can see, but we only have finite memory to 
store which string we saw.

That's a problem... can we formalize this?



If L is a language over Σ and x, y ∈ Σ*, we say that

x ≢L y if    ∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L)

Let Σ = {a, b, ≟} and
Let EQ = { w≟w | w ∈ {a, b}*}

How many of the following statements are true?

a ≢EQ b
abb ≢EQ abb

ε ≢EQ ab
≟≟ ≢EQ ≟

≟≟≟ ≢EQ ≟≟
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Distinguishability

Let's focus on this language for now:

EQ = { w≟w | w ∈ {a, b}*}  

Lemma: If x, y ∈ {a, b}* and x ≠ y, then
x ≢EQ y.

Proof: Let x and y be two distinct, arbitrary
strings from {a, b}*. Then we see that
x≟x ∈ EQ and y≟x ∉ EQ, so we conclude that
x ≢EQ y, as required. ■



Theorem: The language EQ = { w≟w | w ∈ {a, b}*} is not
regular.

Proof: Suppose for the sake of contradiction that L is regular.
Let D be a DFA for EQ and let k be the number of states in
D. Consider any k+1 distinct s {a, b} D
only has k states, by the pigeonhole principle there must
be at least two strings x and y that, when run through D,
end in the same state.

Our lemma tells us that x ≢EQ y. By our earlier theorem, this 
means that x and y cannot end in the same state when run 
through D. But this is impossible, since specifically chose x and 
y to end in the same state when run through D.

We have reached a contradiction, so our assumption must have 
been wrong. Thus EQ is not regular. ■
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We're going to see a simpler proof of this result 
later on once we've built more machinery. If 
(hypothetically speaking) you want to prove 

something like this in the future, we'd 
recommend not using this proof as a template.
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Let D be a DFA for E and let k be the number of states in
D.

Consider the strings a0, a1, a2, …, ak. This is a collection of k+1 
strings and there are only k states in D. Therefore, by the 
pigeonhole principle, there must be two distinct strings am and an

that end in the same state when run through D.

Our lemma tells us that am ≢E an. By our earlier theorem we know 
that am and an cannot end in the same state when run through D. 
But this is impossible, since we know that am and an do end in the 
same state when run through D.

We have reached a contradiction, so our assumption must have 
been wrong. Therefore, E is not regular. ■
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same state...
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the same state when run through D.
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But this is impossible, since we know that x and y must end in the 
same state when run through D.
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been wrong. Therefore, L is not regular. ■

For any number of states k, we need a way to 
find k+1 strings so that two of them get into the 

same state...

… and all those strings need to be 
distinguishable so that we get a 

contradiction.

Imagine we have an infinite set of 
strings S with the following 

property:

∀x ∈ S. ∀y ∈ S. (x ≠ y → x ≢L y)

What happens?



The Myhill-Nerode Theorem

Theorem: Let L be a language over Σ.
If there is a set S ⊆ Σ* with the following 
properties, then L is not regular:

S is infinite (that is, S contains infinitely many 
strings).

The strings in S are pairwise 
distinguishable relative to L. That is,

∀x ∈ S. ∀y ∈ S. (x ≠ y → x ≢L y).



The Myhill-Nerode Theorem

Theorem: Let L be a language over Σ.
If there is a set S ⊆ Σ* with the following 
properties, then L is not regular:

S is infinite (that is, S contains infinitely many 
strings).

The strings in S are pairwise 
distinguishable relative to L. That is,

∀x ∈ S. ∀y ∈ S. (x ≠ y → x ≢L y).

If you pick any two strings in S
that aren’t equal to one another…

… then they’re 
distinguishable

relative to L.



Proof: Let L be an arbitrary language over Σ. Let S ⊆ Σ* be an
infinite set of strings with the following property: if x, y ∈ S and
x ≠ y, then x ≢L y. We will show that L is not regular.

Suppose for the sake of contradiction that L is regular. This means 
that there must be some DFA D for L. Let k be the number of states in 
D. Since there are infinitely many strings in S, we can choose k+1 
distinct strings from S and consider what happens when we run D on 
all of those strings. Because there are only k states in D and we've 
chosen k+1 strings from S, by the pigeonhole principle we know that 
at least two strings from S must end in the same state in D. Choose 
any two such strings and call them x and y.

Because x and y are distinct strings in S, we know that x ≢ y. Our 
earlier theorem therefore tells us that when we run D on inputs x and 
y, they must end up in different states. But this is impossible – we 
chose x and y precisely because they end in the same state when run 
through D.

We have reached a contradiction, so our assumption must have been 
wrong. Thus L is not a regular language. ■

L



Using the Myhill-Nerode Theorem



Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. This set is infinite
because it contains one string for each natural
number. Now, consider any strings an, am ∈ S
where an ≠ am. Then anbn ∈ E and ambn ∉ E.
Consequently, an ≢E am. Therefore, by the Myhill-
Nerode theorem, L is not regular. ■
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We know that any two strings of the form 
an and am, where n ≠ m, are 
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So build the set S = { an | n ∈ ℕ }.

Notice that S isn't a subset of E. That's 
okay: we never said that S needs to be a 
subset of E!
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Theorem: The language EQ = { w≟w | w ∈ {a, b}*}
is not regular.

Proof: Let S = {a, b}*. This set is infinite because it
contains infinitely many strings of the form an.
Now, consider any x, y ∈ S where x ≠ y. Then
x≟x ∈ EQ and y≟x ∉ EQ. Consequently, x ≢EQ y.
Therefore, by the Myhill-Nerode theorem, EQ is
not regular. ■



Theorem: The language EQ = { w≟w | w ∈ {a, b}*}
is not regular.

Proof: Let S = {a, b}*. This set is infinite because it
contains infinitely many strings of the form an.
Now, consider any x, y ∈ S where x ≠ y. Then
x≟x ∈ EQ and y≟x ∉ EQ. Consequently, x ≢EQ y.
Therefore, by the Myhill-Nerode theorem, EQ is
not regular. ■

To use the Myhill-Nerode theorem, we need 
to find an infinite set of strings that are 
pairwise distinguishable relative to EQ.

We know that any two distinct strings over 
the alphabet {a, b} are distinguishable.

So pick the set S = {a, b}*.

Notice that S isn't a subset of EQ. That's 
okay: we never said that S needs to be a 
subset of EQ!



Theorem: The language EQ = { w≟w | w ∈ {a, b}*}
is not regular.

Proof: Let S = {a, b}*. This set is infinite because it
contains infinitely many strings of the form an.
Now, consider any x, y ∈ S where x ≠ y. Then
x≟x ∈ EQ and y≟x ∉ EQ. Consequently, x ≢EQ y.
Therefore, by the Myhill-Nerode theorem, EQ is
not regular. ■

The Myhill-Nerode theorem asks for a set S ⊆ {a, b, ≟}*
where S is infinite and

∀x ∈ S. ∀y ∈ S. (x ≠ y → x ≢EQ y.)

Which of these sets meets these criteria?

A. S = {a, b, ≟}*

B. S = {a, b}*

C. S = {a≟}*

D. S = {a}*
E. None of these, or two or more of these.
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Theorem: The language EQ = { w≟w | w ∈ {a, b}*}
is not regular.

Proof: Let S = {a, b}*. This set contains infinitely 
many strings. Now, consider any x, y ∈ S where
x ≠ y. Then x≟x ∈ EQ and y≟x ∉ EQ.

Consequently,
x ≢ y. Therefore, by the Myhill-Nerode theorem,
EQ is not regular. ■

EQ



Approaching Myhill-Nerode

The challenge in using the Myhill-Nerode
theorem is finding the right set of strings.

General intuition:

Start by thinking about what information a 
computer “must” remember in order to 
answer correctly.

Choose a group of strings that all require 
different information.

Prove that those strings are distinguishable 
relative to the language in question.



An Analogy

BobAlice

string w

Imagine a scenario where Bob is thinking of a 
string and Alice has to figure out whether that 
string is in a particular language

language L



An Analogy

BobAlice

string w

language L

The catch: Bob can only send Alice one character 
at a time, and Alice doesn’t know how long the 
string is until Bob tells her that he’s done 
sending input



An Analogy

BobAlice

string w

language L

What does Alice need to remember about 
the characters she’s receiving from Bob?
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An Analogy

BobAlice

961820

What does Alice need to remember about 
the characters she’s receiving from Bob?

L = { w is divisible by 5 }

Initially it seems like Alice has to remember the whole number that Bob is sending to her, but 
we only care about divisibility by 5 here so we can get away with remembering a lot less.



An Analogy

BobAlice

961820

Key insight: Alice only needs to 
remember the last character she 
received from Bob

L = { w is divisible by 5 }

0



An Analogy

BobAlice

961820

Key insight: Alice only needs to 
remember the last character she 
received from Bob

L = { w is divisible by 5 }

9
The number that Bob is thinking of could get unboundedly large, but the size of what Alice 

needs to remember remains constant (finite).



An Analogy

BobAlice

aaabbb

Let’s contrast this with one of the non-
regular languages we saw today:

L = { anbn | n ∈ ℕ }
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aaabbb

Alice needs to remember how many a’s she’s 
seen so far, since she needs to verify that the 
number of b’s matches

L = { anbn | n ∈ ℕ }



An Analogy

BobAlice

aaabbb

Alice needs to remember how many a’s she’s 
seen so far, since she needs to verify that the 
number of b’s matches

L = { anbn | n ∈ ℕ }

As the size of Bob’s string gets larger, the amount of memory Alice needs also increases. Since 
Bob’s string could get unboundedly large, we need infinite memory.



An Analogy

BobAlice

string w

language L

Key insight: if Alice has to remember 
infinitely many things, or one of 
infinitely many possibilities, the 
language is probably not regular



Tying Everything Together

One of the intuitions we hope you develop for DFAs 
is to have each state in a DFA represent some key 
piece of information the automaton has to
remember.

If you only need to remember one of finitely many 
pieces of information, that gives you a DFA.

You can formalize this! If we have time, we’ll see 
this later this quarter. If not, and you’re curious, 
take CS154!

If you need to remember one of infinitely many 
pieces of information, you can use the Myhill-
Nerode theorem to prove that the language has no 
DFA.



Where We Stand



Where We Stand

• We've ended up where we are now by trying to answer the 
question “what problems can you solve with a computer?”

• We defined a computer to be DFA, which means that the 
problems we can solve are precisely the regular languages.

• We've discovered several equivalent ways to think about 
regular languages (DFAs, NFAs, and regular expressions) 
and used that to reason about the regular languages.

• We now have a powerful intuition for where we ended up: 
DFAs are finite-memory computers, and regular languages 
correspond to problems solvable with finite memory.

• Putting all of this together, we have a much deeper sense 
for what finite memory computation looks like – and what it 
doesn't look like!



Where We're Going

• What does computation look like with 
unbounded memory?

• What problems can you solve with 
unbounded-memory computers?

• What does it even mean to “solve” such a 
problem?

• And how do we know the answers to any of 
these questions?

• Why do I care about any of these questions 
if I can’t make computers like this?



Next Time

Context-Free Languages

• Context-Free Grammars

• Generating Languages from Scratch


