
Nonregular Languages

Recap from Last Time

Theorem: The following are all equivalent:

· L is a regular language.

· There is a DFA D such that ℒ(D) = L.

· There is an NFA N such that ℒ(N) = L.

· There is a regular expression R such that ℒ(R) = L.

New Stuff!

Why does this matter?

Buttons as Finite-State Machines:

http://cs103.stanford.edu/tools/button-fsm/

http://cs103.stanford.edu/tools/button-fsm/

http://www.tti.unipa.it/~gneglia/ip_networks06/slides/TCPIP_State_Transition_Diagram.pdf

http://www.tti.unipa.it/~gneglia/ip_networks06/slides/TCPIP_State_Transition_Diagram.pdf

https://blog.codecentric.de/en/2016/07/handling-ios-app-states-state-machine/

https://blog.codecentric.de/en/2016/07/handling-ios-app-states-state-machine/

What exactly is a finite-state machine?

a b

Ready!

c ■

Finite-Memory
Computing Device

a b

Ready!

c ■

Finite-Memory
Computing Device

a b

Working

c ■

Finite-Memory
Computing Device

a b

Ready!

c ■

Finite-Memory
Computing Device

a b

Ready!

c ■

Finite-Memory
Computing Device

a b

Thinking

c ■

Finite-Memory
Computing Device

a b

Ready!

c ■

Finite-Memory
Computing Device

a b

Ready!

c ■

Finite-Memory
Computing Device

a b

Thinking

c ■

Finite-Memory
Computing Device

a b

Ready!

c ■

Finite-Memory
Computing Device

a b

Ready!

c ■

Finite-Memory
Computing Device

a b

Working

c ■

Finite-Memory
Computing Device

a b

Ready!

c ■

Finite-Memory
Computing Device

a b

Ready!

c ■

Finite-Memory
Computing Device

a b

Working

c ■

Finite-Memory
Computing Device

a b

YES

c ■

Finite-Memory
Computing Device

The Model

The computing device has internal workings that can
be in one of finitely many possible configurations.

Each state in a DFA corresponds to some possible
configuration of the internal workings.

After each button press, the computing device does
some amount of processing, then gets to a
configuration where it's ready to receive more input.

Each transition abstracts away how the computation is
done and just indicates what the ultimate configuration
looks like.

After the user presses the “done” button, the computer
outputs either YES or NO.

The accepting and rejecting states of the machine
model what happens when that button is pressed.

Computers as Finite Automata

My computer has 32GB of RAM and about
465GB of hard disk space.

That's a total of 497GB of memory, which is
533,649,686,528 bits.

There are “only” 2533,649,686,528 possible
configurations of the memory in my computer.

You could in principle build a DFA
representing my computer, where there's one
symbol per type of input the computer can
receive.

A Powerful Intuition

Regular languages correspond to problems
that can be solved with finite memory.

At each point in time, we only need to store one
of finitely many pieces of information.

Nonregular languages, in a sense, correspond to
problems that cannot be solved with finite
memory.

Since every computer ever built has finite
memory, in a sense, nonregular languages
correspond to problems that cannot be solved by
physical computers!

Finding Nonregular Languages

Finding Nonregular Languages

To prove that a language is regular, we can just find
a DFA, NFA, or regex for it.

To prove that a language is not regular, we need to
prove that there are no possible DFAs, NFAs, or
regexes for it.

Claim: We can actually just prove that there's no
DFA for it. Why is this?

This sort of argument will be challenging. Our
arguments will be somewhat technical in nature,
since we need to rigorously establish that no
amount of creativity could produce a DFA for a
given language.

Let's see an example of how to do this.

A Simple Language

Let Σ = {a, b} and consider the following
language:

E = {anbn | n ∈ ℕ }

E is the language of all strings of n a's
followed by n b's:

{ ε, ab, aabb, aaabbb, aaaabbbb, … }

A Simple Language

E = {anbn | n ∈ ℕ }

How many of the following are regular
expressions for the language E defined

above?

a*b*
(ab)*

ε ∪ ab ∪ a2b2 ∪ a3b3

Another Attempt

Let’s try to design an NFA for

E = {anbn | n ∈ ℕ }.

Does this machine work?

start
b

a

Another Attempt

Let’s try to design an NFA for

E = {anbn | n ∈ ℕ }.

How about this one?

start

ba

ε ε

Another Attempt

Let’s try to design an NFA for

E = {anbn | n ∈ ℕ }.

What about this?

start

b

a

bb

a

We seem to be running into some trouble.

Why is that?

Let's imagine what a DFA for the language

{ anbn | n ∈ ℕ} would have to look like.

Can we say anything about it?

start

aaaabbbb

aaaabb

aabbbb

aabb

These cannot be
the same state!

This isn't a single
transition. Think of it as

“after reading aaaa, we
end up at this state.”

aa

aaaa

bbbb

bb

bbbb

bb

q₀ qₖ qₙ

start

A Different Perspective

aa

aaaa aaaabbbb

aabbbb

q₀ qₖ qₙ

start

A Different Perspective

aa

aaaa aaaabbbb

aabbbb

What happens if qₙ is…

…an accepting state? We accept aabbbb ∉ E!
…a rejecting state? We reject

aaaabbbb ∈ E!

q₀ qₖ qₙ

start

A Different Perspective

aa

aaaa aaaabbbb

aabbbb

What happens if qₙ is…

…an accepting state? We accept aabbbb ∉ E!
…a rejecting state? We reject

aaaabbbb ∈ E!

q₀ qₖ qₙ

start

A Different Perspective

aa

aaaa aaaabbbb

aabbbb

What happens if qₙ is…

…an accepting state? We accept aabbbb ∉ E!
…a rejecting state? We reject aaaabbbb ∈ E!

What’s Going On?

As you just saw, the strings a4 and a2 can't end up in
the same state in any DFA for E = {anbn | n ∈ ℕ}.

Two proof routes:

Direct: The states you reach for a4 and a2 have to
behave differently when reading b4 – in one case it
should lead to an accept state, in the other it
should lead to a reject state. Therefore, they must
be different states.

Contradiction: Suppose you do end up in the same
state. Then a4b4 and a2b4 end up in the same state,
so we either reject a4b4 (oops) or accept a2b4 (oops).

Powerful intuition: Any DFA for E must keep a4

and a2 separated. It needs to remember something
fundamentally different after reading those strings.

This idea – that two strings shouldn't end
up in the same DFA state – is fundamental

to discovering nonregular languages.

Let's go formalize this!

Distinguishability

Let L be an arbitrary language over Σ.

Two strings x ∈ Σ* and y ∈ Σ* are called
distinguishable relative to L if there is a string
w ∈ Σ* such that exactly one of xw and yw is in L.

We denote this by writing x ≢L y.

In our previous example, we saw that a2 ≢E a4.

Try appending b4 to both of them.

Formally, we say that x ≢L y if the following is true:

∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L)

If L is a language over Σ and x, y ∈ Σ*, we say that

x ≢L y if ∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L)

Let L = { w ∈ {a, b}* | |w| is a multiple of three }.

How many of the following statements are true?

a ≢L aa
aaa ≢L aa
a ≢L aaaa
aa ≢L bb
ε ≢L baba

Distinguishability

Theorem: Let L be an arbitrary language over Σ.
Let x ∈ Σ* and y ∈ Σ* be strings where x ≢L y. Then
if D is any DFA for L, then D must end in different
states when run on inputs x and y.

Proof sketch:

q₀ qₖ qₙ

start

y

x xw

yw

Hypothetically speaking,
how would you formally

prove this using the 5-tuple
definition of a DFA?

start

aaaa

aaa

aa

bbbb

bbbb

bbbb

bbb

bb

bbb

bbb

bb

bb

start

aaaa

aaa

aa

bbbb

bbbb

bbbb

bbb

bb

bbb

bbb

bb

bb

Distinguishability

Let's focus on this language for now:

E = {anbn | n ∈ ℕ }

Lemma: If m, n ∈ ℕ and m ≠ n, then am ≢E an.

Proof: Let am and an be strings where m ≠ n.
Then ambm ∈ E and anbm ∉ E. Therefore, we
see that am ≢E an, as required. ■

A Bad Combination

Suppose there is a DFA D for the language
E = {anbn | n ∈ ℕ }.

We know the following:

• Any two strings of the form am and an, where m ≠
n, cannot end in the same state when run
through D.

• There are infinitely many pairs of strings of the
form am and an.

However, there are only finitely many states they
can end up in, since D is a deterministic finite
automaton!

What happens if we put these pieces together?

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.

Proof: Suppose for the sake of contradiction that E is regular.
Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D.

Our lemma tells us that am ≢ an, so by our earlier theorem we
know that am and an cannot end in the same state when run
through D. But this is impossible, since we know that am and an

must end in the same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Therefore, E is not regular. ■

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.

Proof: Suppose for the sake of contradiction that E is regular.
Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D.

Our lemma tells us that am ≢ an, so by our earlier theorem we
know that am and an cannot end in the same state when run
through D. But this is impossible, since we know that am and an

must end in the same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Therefore, E is not regular. ■

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.

Proof: Suppose for the sake of contradiction that E is regular.
Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D.

Our lemma tells us that am ≢ an, so by our earlier theorem we
know that am and an cannot end in the same state when run
through D. But this is impossible, since we know that am and an

must end in the same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Therefore, E is not regular. ■

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.

Proof: Suppose for the sake of contradiction that E is regular.
Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D.

Our lemma tells us that am ≢ an, so by our earlier theorem we
know that am and an cannot end in the same state when run
through D. But this is impossible, since we know that am and an

must end in the same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Therefore, E is not regular. ■

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.

Proof: Suppose for the sake of contradiction that E is regular.
Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D.

Our lemma tells us that am ≢ an, so by our earlier theorem we
know that am and an cannot end in the same state when run
through D. But this is impossible, since we know that am and an

must end in the same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Therefore, E is not regular. ■

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.

Proof: Suppose for the sake of contradiction that E is regular.
Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D.

Our lemma tells us that am ≢ an, so by our earlier theorem we
know that am and an cannot end in the same state when run
through D. But this is impossible, since we know that am and an

must end in the same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Therefore, E is not regular. ■

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.

Proof: Suppose for the sake of contradiction that E is regular.
Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D.

Our lemma tells us that am ≢ an, so by our earlier theorem we
know that am and an cannot end in the same state when run
through D. But this is impossible, since we know that am and an

must end in the same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Therefore, E is not regular. ■

E

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.

Proof: Suppose for the sake of contradiction that E is regular.
Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D.

Our lemma tells us that am ≢ an, so by our earlier theorem we
know that am and an cannot end in the same state when run
through D. But this is impossible, since we know that am and an

do end in the same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Therefore, E is not regular. ■

E

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.

Proof: Suppose for the sake of contradiction that E is regular.
Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D.

Our lemma tells us that am ≢ an, so by our earlier theorem we
know that am and an cannot end in the same state when run
through D. But this is impossible, since we know that am and an

do end in the same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Therefore, E is not regular. ■

E

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.

Proof: Suppose for the sake of contradiction that E is regular.
Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D.

Our lemma tells us that am ≢ an, so by our earlier theorem we
know that am and an cannot end in the same state when run
through D. But this is impossible, since we know that am and an

do end in the same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Therefore, E is not regular. ■

E

Theorem: The language E = { anbn | n ∈ ℕ } is not regular.

Proof: Suppose for the sake of contradiction that E is regular.
Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D.

Our lemma tells us that am ≢ an, so by our earlier theorem we
know that am and an cannot end in the same state when run
through D. But this is impossible, since we know that am and an

do end in the same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Therefore, E is not regular. ■

E

We're going to see a simpler proof of this result later on once we've built more
machinery. If (hypothetically speaking) you want to prove something like this

in the future, we'd recommend not using this proof as a template.

What Just Happened?

We've just hit the limit of finite-
memory computation.

To build a DFA for E = { anbn | n ∈ ℕ }, we
need to have different memory
configurations (states) for all possible
strings of the form an.

There's no way to do this with finitely many
possible states!

Where We're Going

We just used the idea of distinguishability
to show that no possible DFA can exist for
some language.

This technique turns out to be pretty
powerful.

We're going to see one more example of
this technique in action, then generalize it
to an extremely powerful theorem for
finding nonregular languages.

Time-Out for Announcements!

Midterm Exam

• Grades are released and solutions up.

• You have until next Monday to submit a
regrade request.

• We’ll be releasing some “practice
midterms” this week, and some practice
finals next week.

• Solutions include a guide to computing your
current grade in the class.

• Disappointed with the exam? Come talk to
us!

Withdraws and Incompletes

• The withdraw deadline for the class is
5pm(?) this Friday.

• Covid-19 and surrounding circumstances
are stressful. We are willing to offer
incompletes, no questions asked.

Your Questions

“test question, please ignore?”

Your Questions

What are some things that you (as teaching
staff) think we should know about the
upcoming school year?

(i.e. remote classes, grading system, less
course offerings, office hours)

Your Questions

Working in CS – industry or academia?

More questions?

• Head to sli.do and put in code
G517 and you can ask or vote on
other questions.

• Questions not answered today
may still be answered on Friday,
plus any new questions.

• We’ll aim for a few questions
each day for the rest of class.

Let’s take a five minute break!

More Nonregular Languages

Another Language

Consider the following language L over the
alphabet Σ = {a, b, ≟}:

EQ = { w≟w | w ∈ {a, b}*}

EQ is the language all strings consisting of
the same string of a's and b's twice, with a
≟ symbol in-between.

Examples:

ab≟ab ∈ EQ bbb≟bbb ∈ EQ ≟ ∈ EQ

ab≟ba ∉ EQ bbb≟aaa ∉ EQ b≟ ∉ EQ

Another Language

EQ = { w≟w | w ∈ {a, b}*}

This language corresponds to the following
problem:

Given strings x, y ∈, {a, b}*,
does x = y?

Justification: x = y happens if and only if
x≟y ∈ EQ.

Is this language regular?

The Intuition

EQ = { w≟w | w ∈ {a, b}*}

Intuitively, any machine for EQ has to be able
to remember the contents of everything to the
left of the ≟ so that it can match them against
the contents of the string to the right of the ≟.

There are infinitely many possible strings we
can see, but we only have finite memory to
store which string we saw.

That's a problem... can we formalize this?

If L is a language over Σ and x, y ∈ Σ*, we say that

x ≢L y if ∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L)

Let Σ = {a, b, ≟} and
Let EQ = { w≟w | w ∈ {a, b}*}

How many of the following statements are true?

a ≢EQ b
abb ≢EQ abb

ε ≢EQ ab
≟≟ ≢EQ ≟

≟≟≟ ≢EQ ≟≟

qₙq₀ qₖ

start

The Intuition

y

x x≟x

y≟x

qₙ

q₀ qₖ qₙ

start

The Intuition

y

x x≟x

y≟x

What happens if qₙ is…

…an accepting state? We accept aabbbb ∉ L!
…a rejecting state? We reject aaaabbbb ∈ L!

qₙ

q₀ qₖ qₙ

start

The Intuition

y

x x≟x

y≟x

What happens if qₙ is…

…an accepting state? We accept y≟x ∉ EQ!
…a rejecting state? e reject aaaabbbb ∈ L!

qₙ

q₀ qₖ qₙ

start

The Intuition

y

x x≟x

y≟x

What happens if qₙ is…

…an accepting state? We accept y≟x ∉ EQ!
…a rejecting state? We reject x≟x ∈ EQ!

qₙ

Distinguishability

Let's focus on this language for now:

EQ = { w≟w | w ∈ {a, b}*}

Lemma: If x, y ∈ {a, b}* and x ≠ y, then
x ≢EQ y.

Proof: Let x and y be two distinct, arbitrary
strings from {a, b}*. Then we see that
x≟x ∈ EQ and y≟x ∉ EQ, so we conclude that
x ≢EQ y, as required. ■

Theorem: The language EQ = { w≟w | w ∈ {a, b}*} is not
regular.

Proof: Suppose for the sake of contradiction that L is regular.
Let D be a DFA for EQ and let k be the number of states in
D. Consider any k+1 distinct s {a, b} D
only has k states, by the pigeonhole principle there must
be at least two strings x and y that, when run through D,
end in the same state.

Our lemma tells us that x ≢EQ y. By our earlier theorem, this
means that x and y cannot end in the same state when run
through D. But this is impossible, since specifically chose x and
y to end in the same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Thus EQ is not regular. ■

Theorem: The language EQ = { w≟w | w ∈ {a, b}*} is not
regular.

Proof: Suppose for the sake of contradiction that L is regular.
Let D be a DFA for EQ and let k be the number of states in
D. Consider any k+1 distinct string {a, b}e D
only has k states, by the pigeonhole principle there must
be at least two strings x and y that, when run through D,
end in the same state.

Our lemma tells us that x ≢EQ y. By our earlier theorem, this
means that x and y cannot end in the same state when run
through D. But this is impossible, since specifically chose x and
y to end in the same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Thus EQ is not regular. ■

Theorem: The language EQ = { w≟w | w ∈ {a, b}*} is not
regular.

Proof: Suppose for the sake of contradiction that EQ is
regular.
Let D be a DFA for EQ and let k be the num {a, b}s in
D. Consider any k+1 distinct strings in {a, b}*. Because D

only has k states, by the pigeonhole principle there must
be at least two strings x and y that, when run through D,
end in the same state.

Our lemma tells us that x ≢EQ y. By our earlier theorem, this
means that x and y cannot end in the same state when run
through D. But this is impossible, since specifically chose x and
y to end in the same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Thus EQ is not regular. ■

Theorem: The language EQ = { w≟w | w ∈ {a, b}*} is not
regular.

Proof: Suppose for the sake of contradiction that EQ is
regular. Let D be a DFA for EQ and let k be the number of
states in D. Consider any k+1 distinct strings in {a, b}*.

Because D
only has k states, by the pigeonhole principle there must
be at least two strings x and y that, when run through D,
end in the same state.

Our lemma tells us that x ≢EQ y. By our earlier theorem, this
means that x and y cannot end in the same state when run
through D. But this is impossible, since specifically chose x and
y to end in the same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Thus EQ is not regular. ■

Theorem: The language EQ = { w≟w | w ∈ {a, b}*} is not
regular.

Proof: Suppose for the sake of contradiction that EQ is
regular. Let D be a DFA for EQ and let k be the number of
states in D. Consider any k+1 distinct strings in {a, b}*.

Because D
only has k states, by the pigeonhole principle there must
be at least two strings x and y that, when run through D,
end in the same state.

Our lemma tells us that x ≢EQ y. By our earlier theorem, this
means that x and y cannot end in the same state when run
through D. But this is impossible, since specifically chose x and
y to end in the same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Thus EQ is not regular. ■

Theorem: The language EQ = { w≟w | w ∈ {a, b}*} is not
regular.

Proof: Suppose for the sake of contradiction that EQ is
regular. Let D be a DFA for EQ and let k be the number of
states in D. Consider any k+1 distinct strings in {a, b}*.
Because D only has k states, by the pigeonhole principle
there must be at least two strings x and y that, when run
through D, end in the same state.

Our lemma tells us that x ≢EQ y. By our earlier theorem, this
means that x and y cannot end in the same state when run
through D. But this is impossible, since specifically chose x and
y to end in the same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Thus EQ is not regular. ■

Theorem: The language EQ = { w≟w | w ∈ {a, b}*} is not
regular.

Proof: Suppose for the sake of contradiction that EQ is
regular. Let D be a DFA for EQ and let k be the number of
states in D. Consider any k+1 distinct strings in {a, b}*.
Because D only has k states, by the pigeonhole principle
there must be at least two strings x and y that, when run
through D, end in the same state.

Our lemma tells us that x ≢EQ y. By our earlier theorem, this
means that x and y cannot end in the same state when run
through D. But this is impossible, since specifically chose x and
y to end in the same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Thus EQ is not regular. ■

Theorem: The language EQ = { w≟w | w ∈ {a, b}*} is not
regular.

Proof: Suppose for the sake of contradiction that EQ is
regular. Let D be a DFA for EQ and let k be the number of
states in D. Consider any k+1 distinct strings in {a, b}*.
Because D only has k states, by the pigeonhole principle
there must be at least two strings x and y that, when run
through D, end in the same state.

Our lemma tells us that x ≢EQ y. By our earlier theorem, this
means that x and y cannot end in the same state when run
through D. But this is impossible, since specifically chose x and
y to end in the same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Thus EQ is not regular. ■

Theorem: The language EQ = { w≟w | w ∈ {a, b}*} is not
regular.

Proof: Suppose for the sake of contradiction that EQ is
regular. Let D be a DFA for EQ and let k be the number of
states in D. Consider any k+1 distinct strings in {a, b}*.
Because D only has k states, by the pigeonhole principle
there must be at least two strings x and y that, when run
through D, end in the same state.

Our lemma tells us that x ≢EQ y. By our earlier theorem, this
means that x and y cannot end in the same state when run
through D. But this is impossible, since we specifically chose x
and y to end in the same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Thus EQ is not regular. ■

Theorem: The language EQ = { w≟w | w ∈ {a, b}*} is not
regular.

Proof: Suppose for the sake of contradiction that EQ is
regular. Let D be a DFA for EQ and let k be the number of
states in D. Consider any k+1 distinct strings in {a, b}*.
Because D only has k states, by the pigeonhole principle
there must be at least two strings x and y that, when run
through D, end in the same state.

Our lemma tells us that x ≢EQ y. By our earlier theorem, this
means that x and y cannot end in the same state when run
through D. But this is impossible, since we specifically chose x
and y to end in the same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Thus EQ is not regular. ■

Theorem: The language EQ = { w≟w | w ∈ {a, b}*} is not
regular.

Proof: Suppose for the sake of contradiction that EQ is
regular. Let D be a DFA for EQ and let k be the number of
states in D. Consider any k+1 distinct strings in {a, b}*.
Because D only has k states, by the pigeonhole principle
there must be at least two strings x and y that, when run
through D, end in the same state.

Our lemma tells us that x ≢EQ y. By our earlier theorem, this
means that x and y cannot end in the same state when run
through D. But this is impossible, since we specifically chose x
and y to end in the same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Thus EQ is not regular. ■

Theorem: The language EQ = { w≟w | w ∈ {a, b}*} is not
regular.

Proof: Suppose for the sake of contradiction that EQ is
regular. Let D be a DFA for EQ and let k be the number of
states in D. Consider any k+1 distinct strings in {a, b}*.
Because D only has k states, by the pigeonhole principle
there must be at least two strings x and y that, when run
through D, end in the same state.

Our lemma tells us that x ≢EQ y. By our earlier theorem, this
means that x and y cannot end in the same state when run
through D. But this is impossible, since we specifically chose x
and y to end in the same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Thus EQ is not regular. ■

Theorem: The language EQ = { w≟w | w ∈ {a, b}*} is not
regular.

Proof: Suppose for the sake of contradiction that EQ is
regular. Let D be a DFA for EQ and let k be the number of
states in D. Consider any k+1 distinct strings in {a, b}*.
Because D only has k states, by the pigeonhole principle
there must be at least two strings x and y that, when run
through D, end in the same state.

Our lemma tells us that x ≢EQ y. By our earlier theorem, this
means that x and y cannot end in the same state when run
through D. But this is impossible, since we specifically chose x
and y to end in the same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Thus EQ is not regular. ■

We're going to see a simpler proof of this result
later on once we've built more machinery. If
(hypothetically speaking) you want to prove

something like this in the future, we'd
recommend not using this proof as a template.

Comparing Proofs

Theorem: The language E = { anbn | n ∈ ℕ } is not a regular
language.

Proof: Suppose for the sake of contradiction that E is regular.
Let D be a DFA for E and let k be the number of states in
D.

Consider the strings a0, a1, a2, …, ak. This is a collection of k+1
strings and there are only k states in D. Therefore, by the
pigeonhole principle, there must be two distinct strings am and an

that end in the same state when run through D.

Our lemma tells us that am ≢E an. By our earlier theorem we know
that am and an cannot end in the same state when run through D.
But this is impossible, since we know that am and an do end in the
same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Therefore, E is not regular. ■

Theorem: The language EQ = { w≟w | w ∈ {a, b}*} is not a
regular language.

Proof: Suppose for the sake of contradiction that EQ is regular.
Let D be a DFA for EQ and let k be the number of states in
D.

Consider any k+1 distinct strings in {a, b}*.These are k+1 strings
and there are only k states in D. By the pigeonhole principle,
there must be two distinct strings x and y from this group that
end in the same state when run through D.

Our lemma tells us that x ≢EQ y. By our earlier theorem we know
that x and y cannot end in the same state when run through D.
But this is impossible, since specifically chose x and y to end in
the same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Therefore, EQ is not regular. ■

Theorem: The language L = [fill in the blank] is not a
regular language.

Proof: Suppose for the sake of contradiction that L is regular.
Let D be a DFA for L and let k be the number of states in
D.

Consider [some k+1 specific strings.] This is a collection of k+1 strings
and there are only k states in D. Therefore, by the pigeonhole
principle, there must be two distinct strings x and y that end in
the same state when run through D.

[Somehow we know] that x ≢L y. By our earlier theorem we know
that x and y cannot end in the same state when run through D.
But this is impossible, since we know that x and y must end in the
same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Therefore, L is not regular. ■

Theorem: The language L = [fill in the blank] is not a
regular language.

Proof: Suppose for the sake of contradiction that L is regular.
Let D be a DFA for L and let k be the number of states in
D.

Consider [some k+1 specific strings.] This is a collection of k+1 strings
and there are only k states in D. Therefore, by the pigeonhole
principle, there must be two distinct strings x and y that end in
the same state when run through D.

[Somehow we know] that x ≢L y. By our earlier theorem we know
that x and y cannot end in the same state when run through D.
But this is impossible, since we know that x and y must end in the
same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Therefore, L is not regular. ■

Theorem: The language L = [fill in the blank] is not a
regular language.

Proof: Suppose for the sake of contradiction that L is regular.
Let D be a DFA for L and let k be the number of states in
D.

Consider [some k+1 specific strings.] This is a collection of k+1 strings
and there are only k states in D. Therefore, by the pigeonhole
principle, there must be two distinct strings x and y that end in
the same state when run through D.

[Somehow we know] that x ≢L y. By our earlier theorem we know
that x and y cannot end in the same state when run through D.
But this is impossible, since we know that x and y must end in the
same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Therefore, L is not regular. ■

For any number of states k, we need a way to
find k+1 strings so that two of them get into the

same state...

Theorem: The language L = [fill in the blank] is not a
regular language.

Proof: Suppose for the sake of contradiction that L is regular.
Let D be a DFA for L and let k be the number of states in
D.

Consider [some k+1 specific strings.] This is a collection of k+1 strings
and there are only k states in D. Therefore, by the pigeonhole
principle, there must be two distinct strings x and y that end in
the same state when run through D.

[Somehow we know] that x ≢L y. By our earlier theorem we know
that x and y cannot end in the same state when run through D.
But this is impossible, since we know that x and y must end in the
same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Therefore, L is not regular. ■

For any number of states k, we need a way to
find k+1 strings so that two of them get into the

same state...

… and all those strings need to be
distinguishable so that we get a

contradiction.

Theorem: The language L = [fill in the blank] is not a
regular language.

Proof: Suppose for the sake of contradiction that L is regular.
Let D be a DFA for L and let k be the number of states in
D.

Consider [some k+1 specific strings.] This is a collection of k+1 strings
and there are only k states in D. Therefore, by the pigeonhole
principle, there must be two distinct strings x and y that end in
the same state when run through D.

[Somehow we know] that x ≢L y. By our earlier theorem we know
that x and y cannot end in the same state when run through D.
But this is impossible, since we know that x and y must end in the
same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Therefore, L is not regular. ■

For any number of states k, we need a way to
find k+1 strings so that two of them get into the

same state...

… and all those strings need to be
distinguishable so that we get a

contradiction.

Imagine we have an infinite set of
strings S with the following

property:

∀x ∈ S. ∀y ∈ S. (x ≠ y → x ≢L y)

What happens?

The Myhill-Nerode Theorem

Theorem: Let L be a language over Σ.
If there is a set S ⊆ Σ* with the following
properties, then L is not regular:

S is infinite (that is, S contains infinitely many
strings).

The strings in S are pairwise
distinguishable relative to L. That is,

∀x ∈ S. ∀y ∈ S. (x ≠ y → x ≢L y).

The Myhill-Nerode Theorem

Theorem: Let L be a language over Σ.
If there is a set S ⊆ Σ* with the following
properties, then L is not regular:

S is infinite (that is, S contains infinitely many
strings).

The strings in S are pairwise
distinguishable relative to L. That is,

∀x ∈ S. ∀y ∈ S. (x ≠ y → x ≢L y).

If you pick any two strings in S
that aren’t equal to one another…

… then they’re
distinguishable

relative to L.

Proof: Let L be an arbitrary language over Σ. Let S ⊆ Σ* be an
infinite set of strings with the following property: if x, y ∈ S and
x ≠ y, then x ≢L y. We will show that L is not regular.

Suppose for the sake of contradiction that L is regular. This means
that there must be some DFA D for L. Let k be the number of states in
D. Since there are infinitely many strings in S, we can choose k+1
distinct strings from S and consider what happens when we run D on
all of those strings. Because there are only k states in D and we've
chosen k+1 strings from S, by the pigeonhole principle we know that
at least two strings from S must end in the same state in D. Choose
any two such strings and call them x and y.

Because x and y are distinct strings in S, we know that x ≢ y. Our
earlier theorem therefore tells us that when we run D on inputs x and
y, they must end up in different states. But this is impossible – we
chose x and y precisely because they end in the same state when run
through D.

We have reached a contradiction, so our assumption must have been
wrong. Thus L is not a regular language. ■

L

Using the Myhill-Nerode Theorem

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. This set is infinite
because it contains one string for each natural
number. Now, consider any strings an, am ∈ S
where an ≠ am. Then anbn ∈ E and ambn ∉ E.
Consequently, an ≢E am. Therefore, by the Myhill-
Nerode theorem, L is not regular. ■

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. This set is infinite
because it contains one string for each natural
number. Now, consider any strings an, am ∈ S
where an ≠ am. Then anbn ∈ E and ambn ∉ E.
Consequently, an ≢E am. Therefore, by the Myhill-
Nerode theorem, L is not regular. ■

To use the Myhill-Nerode theorem, we
need to find an infinite set of strings that
are pairwise distinguishable relative to E.

We know that any two strings of the form
an and am, where n ≠ m, are
distinguishable.

So build the set S = { an | n ∈ ℕ }.

Notice that S isn't a subset of E. That's
okay: we never said that S needs to be a
subset of E!

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. This set is infinite
because it contains one string for each natural
number. Now, consider any strings an, am ∈ S
where an ≠ am. Then anbn ∈ E and ambn ∉ E.
Consequently, an ≢E am. Therefore, by the Myhill-
Nerode theorem, L is not regular. ■

To use the Myhill-Nerode theorem, we
need to find an infinite set of strings that
are pairwise distinguishable relative to E.

We know that any two strings of the form
an and am, where n ≠ m, are
distinguishable.

So build the set S = { an | n ∈ ℕ }.

Notice that S isn't a subset of E. That's
okay: we never said that S needs to be a
subset of E!

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. This set is infinite
because it contains one string for each natural
number. Now, consider any strings an, am ∈ S
where an ≠ am. Then anbn ∈ E and ambn ∉ E.
Consequently, an ≢E am. Therefore, by the Myhill-
Nerode theorem, L is not regular. ■

To use the Myhill-Nerode theorem, we
need to find an infinite set of strings that
are pairwise distinguishable relative to E.

We know that any two strings of the form
an and am, where n ≠ m, are
distinguishable.

So pick the set S = { an | n ∈ ℕ }.

Notice that S isn't a subset of E. That's
okay: we never said that S needs to be a
subset of E!

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. This set is infinite
because it contains one string for each natural
number. Now, consider any strings an, am ∈ S
where an ≠ am. Then anbn ∈ E and ambn ∉ E.
Consequently, an ≢E am. Therefore, by the Myhill-
Nerode theorem, L is not regular. ■

To use the Myhill-Nerode theorem, we
need to find an infinite set of strings that
are pairwise distinguishable relative to E.

We know that any two strings of the form
an and am, where n ≠ m, are
distinguishable.

So pick the set S = { an | n ∈ ℕ }.

Notice that S isn't a subset of E. That's
okay: we never said that S needs to be a
subset of E!

Theorem: The language E = { anbn | n ∈ ℕ } is
not regular.

Proof: Let S = { an | n ∈ ℕ }. This set is infinite
because it contains one string for each natural
number. Now, consider any strings an, am ∈ S
where an ≠ am. Then anbn ∈ E and ambn ∉ E.
Consequently, an ≢ am. Therefore, by the Myhill-
Nerode theorem, E is not regular. ■

E

Theorem: The language EQ = { w≟w | w ∈ {a, b}*}
is not regular.

Proof: Let S = {a, b}*. This set is infinite because it
contains infinitely many strings of the form an.
Now, consider any x, y ∈ S where x ≠ y. Then
x≟x ∈ EQ and y≟x ∉ EQ. Consequently, x ≢EQ y.
Therefore, by the Myhill-Nerode theorem, EQ is
not regular. ■

Theorem: The language EQ = { w≟w | w ∈ {a, b}*}
is not regular.

Proof: Let S = {a, b}*. This set is infinite because it
contains infinitely many strings of the form an.
Now, consider any x, y ∈ S where x ≠ y. Then
x≟x ∈ EQ and y≟x ∉ EQ. Consequently, x ≢EQ y.
Therefore, by the Myhill-Nerode theorem, EQ is
not regular. ■

To use the Myhill-Nerode theorem, we need
to find an infinite set of strings that are
pairwise distinguishable relative to EQ.

We know that any two distinct strings over
the alphabet {a, b} are distinguishable.

So pick the set S = {a, b}*.

Notice that S isn't a subset of EQ. That's
okay: we never said that S needs to be a
subset of EQ!

Theorem: The language EQ = { w≟w | w ∈ {a, b}*}
is not regular.

Proof: Let S = {a, b}*. This set is infinite because it
contains infinitely many strings of the form an.
Now, consider any x, y ∈ S where x ≠ y. Then
x≟x ∈ EQ and y≟x ∉ EQ. Consequently, x ≢EQ y.
Therefore, by the Myhill-Nerode theorem, EQ is
not regular. ■

The Myhill-Nerode theorem asks for a set S ⊆ {a, b, ≟}*
where S is infinite and

∀x ∈ S. ∀y ∈ S. (x ≠ y → x ≢EQ y.)

Which of these sets meets these criteria?

A. S = {a, b, ≟}*

B. S = {a, b}*

C. S = {a≟}*

D. S = {a}*
E. None of these, or two or more of these.

Theorem: The language EQ = { w≟w | w ∈ {a, b}*}
is not regular.

Proof: Let S = {a, b}*. This set is infinite because it
contains infinitely many strings of the form an.
Now, consider any x, y ∈ S where x ≠ y. Then
x≟x ∈ EQ and y≟x ∉ EQ. Consequently, x ≢EQ y.
Therefore, by the Myhill-Nerode theorem, EQ is
not regular. ■

To use the Myhill-Nerode theorem, we need
to find an infinite set of strings that are
pairwise distinguishable relative to EQ.

We know that any two distinct strings over
the alphabet {a, b} are distinguishable.

So pick the set S = {a, b}*.

Notice that S isn't a subset of EQ. That's
okay: we never said that S needs to be a
subset of EQ!

Theorem: The language EQ = { w≟w | w ∈ {a, b}*}
is not regular.

Proof: Let S = {a, b}*. This set is infinite because it
contains infinitely many strings of the form an.
Now, consider any x, y ∈ S where x ≠ y. Then
x≟x ∈ EQ and y≟x ∉ EQ. Consequently, x ≢EQ y.
Therefore, by the Myhill-Nerode theorem, EQ is
not regular. ■

To use the Myhill-Nerode theorem, we need
to find an infinite set of strings that are
pairwise distinguishable relative to EQ.

We know that any two distinct strings over
the alphabet {a, b} are distinguishable.

So pick the set S = {a, b}*.

Notice that S isn't a subset of EQ. That's
okay: we never said that S needs to be a
subset of EQ!

Theorem: The language EQ = { w≟w | w ∈ {a, b}*}
is not regular.

Proof: Let S = {a, b}*. This set is infinite because it
contains infinitely many strings of the form an.
Now, consider any x, y ∈ S where x ≠ y. Then
x≟x ∈ EQ and y≟x ∉ EQ. Consequently, x ≢EQ y.
Therefore, by the Myhill-Nerode theorem, EQ is
ot regular. ■

To use the Myhill-Nerode theorem, we need
to find an infinite set of strings that are
pairwise distinguishable relative to EQ.

We know that any two distinct strings over
the alphabet {a, b} are distinguishable.

So pick the set S = {a, b}*.

Notice that S isn't a subset of EQ. That's
okay: we never said that S needs to be a
subset of EQ!

Theorem: The language EQ = { w≟w | w ∈ {a, b}*}
is not regular.

Proof: Let S = {a, b}*. This set contains infinitely
many strings. Now, consider any x, y ∈ S where
x ≠ y. Then x≟x ∈ EQ and y≟x ∉ EQ.

Consequently,
x ≢ y. Therefore, by the Myhill-Nerode theorem,
EQ is not regular. ■

EQ

Approaching Myhill-Nerode

The challenge in using the Myhill-Nerode
theorem is finding the right set of strings.

General intuition:

Start by thinking about what information a
computer “must” remember in order to
answer correctly.

Choose a group of strings that all require
different information.

Prove that those strings are distinguishable
relative to the language in question.

An Analogy

BobAlice

string w

Imagine a scenario where Bob is thinking of a
string and Alice has to figure out whether that
string is in a particular language

language L

An Analogy

BobAlice

string w

language L

The catch: Bob can only send Alice one character
at a time, and Alice doesn’t know how long the
string is until Bob tells her that he’s done
sending input

An Analogy

BobAlice

string w

language L

What does Alice need to remember about
the characters she’s receiving from Bob?

An Analogy

BobAlice

961820

What does Alice need to remember about
the characters she’s receiving from Bob?

L = { w is divisible by 5 }

An Analogy

BobAlice

961820

What does Alice need to remember about
the characters she’s receiving from Bob?

L = { w is divisible by 5 }

Initially it seems like Alice has to remember the whole number that Bob is sending to her, but
we only care about divisibility by 5 here so we can get away with remembering a lot less.

An Analogy

BobAlice

961820

Key insight: Alice only needs to
remember the last character she
received from Bob

L = { w is divisible by 5 }

0

An Analogy

BobAlice

961820

Key insight: Alice only needs to
remember the last character she
received from Bob

L = { w is divisible by 5 }

9
The number that Bob is thinking of could get unboundedly large, but the size of what Alice

needs to remember remains constant (finite).

An Analogy

BobAlice

aaabbb

Let’s contrast this with one of the non-
regular languages we saw today:

L = { anbn | n ∈ ℕ }

An Analogy

BobAlice

aaabbb

Alice needs to remember how many a’s she’s
seen so far, since she needs to verify that the
number of b’s matches

L = { anbn | n ∈ ℕ }

An Analogy

BobAlice

aaabbb

Alice needs to remember how many a’s she’s
seen so far, since she needs to verify that the
number of b’s matches

L = { anbn | n ∈ ℕ }

As the size of Bob’s string gets larger, the amount of memory Alice needs also increases. Since
Bob’s string could get unboundedly large, we need infinite memory.

An Analogy

BobAlice

string w

language L

Key insight: if Alice has to remember
infinitely many things, or one of
infinitely many possibilities, the
language is probably not regular

Tying Everything Together

One of the intuitions we hope you develop for DFAs
is to have each state in a DFA represent some key
piece of information the automaton has to
remember.

If you only need to remember one of finitely many
pieces of information, that gives you a DFA.

You can formalize this! If we have time, we’ll see
this later this quarter. If not, and you’re curious,
take CS154!

If you need to remember one of infinitely many
pieces of information, you can use the Myhill-
Nerode theorem to prove that the language has no
DFA.

Where We Stand

Where We Stand

• We've ended up where we are now by trying to answer the
question “what problems can you solve with a computer?”

• We defined a computer to be DFA, which means that the
problems we can solve are precisely the regular languages.

• We've discovered several equivalent ways to think about
regular languages (DFAs, NFAs, and regular expressions)
and used that to reason about the regular languages.

• We now have a powerful intuition for where we ended up:
DFAs are finite-memory computers, and regular languages
correspond to problems solvable with finite memory.

• Putting all of this together, we have a much deeper sense
for what finite memory computation looks like – and what it
doesn't look like!

Where We're Going

• What does computation look like with
unbounded memory?

• What problems can you solve with
unbounded-memory computers?

• What does it even mean to “solve” such a
problem?

• And how do we know the answers to any of
these questions?

• Why do I care about any of these questions
if I can’t make computers like this?

Next Time

Context-Free Languages

• Context-Free Grammars

• Generating Languages from Scratch

